У взрослых мышей добились регенерации нейронов сетчатки

  • 15 августа, 2017
    0 Comments

    Биологи из Вашингтонского университета штата Сиэттл смогли восстановить нейроны сетчатки у мышей. Этого удалось добиться с помощью включения регулятора транскрипции Ascl1 клеток Мюллера, который участвует в восстановлении сетчатки у рыб, а также добавления ингибитора гистоновых деацетилаз, что обеспечило доступ к нужным генам даже в хромосомах взрослых мышей. Исследование опубликовано в Nature Letter, а интервью с учеными и краткий обзор работы выложены на Eurekalert.

    Сетчатка - внутренняя оболочка глаза, которая является воспринимающей частью и первичным анализатором зрительного органа. Она состоит из десятка разных слоев клеток, которые воспринимают потоки света, обрабатывают сигналы и передают их по зрительным нервам в головной мозг. Мюллеровские глиальные клетки, простирающиеся от внутренней до внешней пограничной мембране сетчатки, у амфибий, рыб и некоторых других животных способны выполнять роль своеобразных стволовых клеток и участвуют в регенерации сетчатки, образуя новые нейроны взамен разрушенных. У млекопитающих регенерация сетчатки не осуществляется. Мюллеровские клетки участвуют в проведении световых сигналов, но не способны чинить дефекты. Необратимость нарушений сетчатки, например, вследствие развития глаукомы, является серьезной проблемой современной медицины.

    У рыб-данио, которые в данном исследовании служили примерным объектом, мюллеровские клетки превращаются в нейроны при разрушении сетчатки за счет включения гена регулятора транскрипции Ascl1 и последующего запуска ряда процессов. У млекопитающих этот ген тоже есть, но экспрессия его в соответствующий момент не активируется. Ученые научились включать экспрессию фактора Ascl1 искусственным путем у мышей, создав регулируемый промотор к его гену. Мышам предварительно вводили вещества, разрушающие нейроны сетчатки, и смотрели, станут ли мюллеровские клетки заменять их. 

    После включения промотора экспрессия Ascl1 успешно начиналась, однако этот эффект, как уже было показано в предыдущих работах, наблюдался только у новорожденных мышей. Как выяснилось, у взрослых мышей доступ к необходимым для превращения мюллеровских клеток генам был закрыт вследствие эпигенетических факторов (изменения конфигурации хромосом за счет взаимодействия с белками-гистонами). Добавление трихостатина-А, ингибитора гистоновых деацетилаз, повысило уровень ацетилирования гистона H3 K27 и предотвратило эти изменения, «открыв» нужный участок на хромосоме. После этого экспрессия Ascl1 успешно включалась и у взрослых мышей.

    Мюллеровские клети уже через полторы-две недели эффективно превращались в нейроны, обладающими соответствующими маркерами (например, Otx2), и теряли глиальные маркеры (например, Sox9). Ученые отмечают, что новообразованные нейроны сами начинали создавать правильные «контакты» с остальными частями сетчатки, реагируя на свет, воспринимая сигналы и передавая информацию дальше, поэтому отдельно придумывать, как решать эту проблему, оказалось не нужно.

    Оригинал статьи: Анна Казнадзей https://nplus1.ru/news/2017/07/28/mice-retina

  • Экспертная колонка

    17 февраля 2020
    Выращивание новых органов из стволовых клеток, генная терапия, редактирование генома, клонирование, генетически модифицированные организмы... Наверное, нет сегодня более горячих и актуальных тем, чем эти. В то же время трудно найти темы, которые бы сопровождались таким количеством мифов, как вышеперечисленные. Внести ясность в эту сложную и интересную проблематику мы попросили академика Всеволода Арсеньевича Ткачука, декана факультета фундаментальной медицины, директора Института регенеративной медицины МГУ им. М.В. Ломоносова.
  • Видео недели

    Компания Abcam за 2 минуты познакомит вас с основными прорывами в области биомедицины за последние 20 лет. 

  • Twitter лента